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SYMBOLS

reference area = frontal area of the fuselage, 1.43 ft2
drag coefficient, D/(q Aref )

total mutual interference drag between fuselage, pylon, and hub fairing
total drag of fuselage+pylon+hub fairing

isolated fuselage drag

fuselage-on-hub interference drag

mutual interference drag of the fuselage+hub fairing
mutual interference drag of the fuselage+pylon
fuselage-on-pylon interference drag

isolated hub fairing drag

hub-on-fuselage interference drag

hub-on-pylon interference drag

isolated pylon drag

pylon-on-fuselage interference drag

mutual interference drag of the pylon+hub fairing
pylon-on-hub interference drag

lift coefficient, L/(q Aref)

pitch moment coefficient, PM/(q Lyef Aref)

roll moment coefficient, RM/(q Lyef Aref)

side force coefficient, SF/(q Aref )

yaw moment coefficient, RM/(q Lyef Aref )

drag, Ib

equivalent flat plate drag area, D/q (ft2)

hub/pylon fairing gap width, ft

hub fairing height, bottom of fairing to top of fuselage, ft
lift, Ib

reference length, 1.26 ft

lift to dynamic pressure ratio, L/q (ft2)

pitch moment, ft-1b

dynamic pressure = 1/2 Vo2 (psH

roll moment, ft-1b

side force, 1b
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YM

d axial
d normal
d pitch
d roll

d side

d yaw

free-stream velocity, ft/sec
yaw moment, ft-1b

angle of attack, deg
uncertainty in an axial load measurement of the strain gage balance, 1b

uncertainty in a normal load measurement of the strain gage balance, Ib
uncertainty in a pitch moment measurement of the strain gage balance, in-1b
uncertainty in a roll moment measurement of the strain gage balance, in-1b
uncertainty in a side force measurement of the strain gage balance, 1b
uncertainty in a yaw moment measurement of the strain gage balance, in-Ib

density, slug/ft 3
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SUMMARY

A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the
parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing
camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon
mutual interference drag was examined in detail. Force and moment data are presented in tabular and
graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower
surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces
high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing
with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces gener-
ate 77% more interference drag than do cambered hub fairings with flat lower surfaces, at moderate
negative angle of attack.

1. INTRODUCTION

Rotor hub and pylon drag constitute 20-30% of the total parasite drag of single rotor helicopters
(refs. 1-3). Since parasite drag represents 40-50% of the total power requirement of a single rotor heli-
copter (ref. 3), the drag of the rotor hub represents roughly 10% of the total power required. The fuel
savings from the reduction of helicopter rotor hub drag has stimulated many research efforts. Further-
more, current civilian and military requirements call for helicopters with high speed and long range
capabilities, and therefore low drag is an important design criterion.

The idea of using a hub fairing to streamline the rotor hub dates from the late nineteen-fifties.
One of the earliest studies of isolated hub fairing drag with different fairing thickness and camber was
done by Sikorsky Aircraft (ref. 4). Bell Helicopter Company and the Boeing Company Vertol Division
also have conducted some studies of rotor hub fairings (refs. 5-7).

Besides the work of developing low-drag hub fairing and pylon components, researchers are
faced with a major obstacle when solving the hub-drag problem: the additional drag engendered by the
aerodynamic interactions between the hub fairing and pylon. Because this interference drag could
amount to 35% of the total hub and pylon drag (ref. 3), it remains a major barricade to the successful
development of low-drag hub fairings. A research program was initiated at NASA Ames Research
Center to study the aerodynamic interactions and interference drag between hub fairing and pylon. The
goal of the Ames Hub Drag Reduction Research Program is to devise hub fairing designs that can
achieve 50-80% hub/pylon drag reduction.

As part of this program, two small-scale wind tunnel tests were conducted in the NASA Ames
7- by 10-Foot Wind Tunnel to investigate the drag characteristics of new hub fairing and pylon design
concepts (refs. 8-12). A substantial data base was established on the effects of vanious hub fairing and
pylon aerodynamic attributes on hub drag reduction. However, since additional information was needed
to further this hub drag reduction effort, a third wind tunnel test was conducted in the NASA Langley
14- by 22-Foot Wind Tunnel. The data from this test are presented in this paper.



The main objectives of the Langley 14- by 22-Foot Wind Tunnel test were to (1) confirm the test
methodology used in the earlier Ames 7- by 10-Foot Wind Tunnel hub drag tests by correlating data
from independent test setups; (2) identify aerodynamic characteristics of different hub and pylon fairing
designs; and (3) conduct a more extensive study of the effect of hub/pylon clearance on hub/pylon
interference drag.

The wind tunnel test used a 1/5-scale model of the XH-59A as the baseline fuselage upon which
various hub and pylon fairing assemblies were mounted. The hub assemblies were nonrotating. Data
acquired were drag, lift, side force, yawing moment, rolling moment, and pitching moment. This report
presents major findings of the test. Included are all the aerodynamic load data in tabulated form, and the
graphical presentation of the drag data. Test configurations and data reliability are discussed.

2. TEST APPARATUS AND DATA ACQUISITION, RELIABILITY, AND PRESENTATION

2.1 Test Apparatus

The 1/5-scale XH-59A model was used as the baseline fuselage. The XH-59A is the Advancing
Blade Concept Helicopter developed by the Sikorsky Aircraft Division of United Technologies
Corporation. The XH-59A model had been tested extensively in the Ames 12-Foot Pressure Wind
Tunnel and the 7- by 10-Foot Wind Tunnel with both nonrotating (refs. 8,9) and rotating (ref. 13) hard-
ware. Instead of the dual-hub configuration used in the Advancing Blade Concept, a single-hub
configuration was used in this test.

The model installation is shown in figure 1. The hub and shaft fairings were mounted on a
nonrotating shaft. The model was sting-mounted, and used an internal strain-gage balance as the load-
measurement unit. The mounting scheme as well as the dimensions of the model are given in figure 2.

2.2 Data Acquisition and Reduction

Quantitative data in the form of six component forces and moments were obtained by an internal
strain-gage balance. Each data point taken was an average of 40 sample points. All data reduction was
done using a MODCOMP Classic computer where weight tare corrections and the balance-axis-to-wind-
axis transformation were applied to the raw data.

Data were acquired for a range of dynamic pressures and model pitch angles at zero yaw angle.
Dynamic pressure sweeps were conducted at 0° angle of attack, with dynamic pressure varying from
40 psf to 120 psf in increments of 20 psf. Most of the runs were pitch angle sweeps tested at a dynamic
pressure of 80 psf with the angle of attack varying from -10° to 2° in increments of 2°. The reference
coordinate system used in data reduction is shown in figure 3.

The force and moment data are presented in coefficient form. The frontal area of the fuselage,
Aref = 1.43 fi%, was used as the reference area to normalize the force data. The height of the fuselage
cross section, 1.26 ft, was used as the reference length, Lres.




2.3 Tunnel Corrections

Corrections of solid blockage and wake blockage effects were deemed unnecessary because the
model blockage was less than 1% of the test section area. The model was unpowered and the span of the
only lifting surface, the hub fairing, was less than 14% of the tunnel span; therefore, wall interference
effects and jet boundary corrections were not applied to the data. Other effects, such as tunnel buoy-
ancy, were also negligible. The internal mounting scheme obviated the correction for sting tares, and no
attempt was made to account for the sting-on-fuselage interference drag.

2.4 Accuracy of the Internal Strain-Gage Balance
The accuracies of the force and moment measurements from the internal balance were within

0.5% of the corresponding maximum load of each measurement component. The resolution of the
balance in engineering units is given below:

8 iy = £03751b
8 rormal = 8.0001b
844 = 12.5001b
Spuen = £125ftIb
8.1 = +0.625ft1b
8yuw = +0.625ftIb

The drag, lift, side force, pitch moment, roll moment, and yaw moment of the acrodynamic loads
were measured by the axial, normal, side, pitch, roll, and yaw gages of the balance, respectively. Ata
dynamic pressure of 80 psf, the drag level of the low-drag test configuration (H50,540) was about 14 1b;
therefore, at most a 3% uncertainty in measured drag could be ascribed to inaccuracy of the balance.

2.5 Data Repeatability

In order to study the repeatability of the test data, the H50,540 configuration (see section 3.1)
was tested on two different days with many configuration changes. Figure 4 displays the drag data (in
engineering units) of the two repeated runs. The repeated data fell within an acceptable range of
uncertainty dictated by the resolution of the internal balance.

2.6 Reynolds Number Effects

Reynolds number effect or scale effect on the drag measurement of the H50,540 test configura-
tion (see section 3 for definitions of test configurations) is shown in figure 5. Problems relating to the
Reynolds number effects on the drag measurements of helicopter models (high-drag bodies) have been
well noted in the past ( refs. 14,16). However, the test data reported here exhibit only a very slight
dependence on the Reynolds number based on the height of the fuselage; that is, within the range of
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tested Reynolds numbers, no noticeable transitional effect has been observed. Most of the data pre-
sented were taken at a Reynolds number of 1.5 x 106/ft.

3. TEST CONFIGURATIONS AND TEST SWEEPS

3.1 Test Configurations

All test configurations were given a two-digit designation for easy reference. The test matrix
given in table I shows how the test was structured, and it can be used as a quick reference to the test
configurations. Test configurations were defined based on a combination of geometric parameters,
shown in figure 6.

1. Hub fairings. Basically, a hub fairing is designed to reduce the acrodynamic drag of the rotor
hub in forward flight. All of the hub fairings tested have a circular planform. The profiles of the hub
fairing cross sections are of key interest. Hub fairing profiles with different camber, diameter, and
thickness ratio were studied, and were identified with a two- or three-digit designation with an H prefix.
The following hub fairings were tested: H10, H20, H30, H40, H50, H60, H220, H230, H240, H250,
H260, H270, and H280. See figures 7-10 for the profiles of these hub fairings.

2. Pylons (shaft fairings). The use of a pylon, or shaft fairing, is similar to that of the hub fairing
except that the pylon is used to fair the rotor shaft. Pylons were identified with a two-digit designation
with an S prefix. Two configurations were tested: S40 and S80. The cross sections of these shaft
fairings are shown in figure 11.

3. Hub/pylon gap width. The gap (or clearance) between the hub fairing and the pylon has been
observed to hamper the effectiveness of the hub fairing as a drag-reduction device (refs. 8,9). Therefore,
the effect of hub/pylon gap on drag was studied closely in this test. Except as noted, the hub/pylon gap
is zero for all configurations.

4. Pylon height. Pylon height is one of the parameters that influences the overall hub/pylon drag,
and it is defined as the length of the rotor shaft between the top of the fuselage and the bottom of the hub
fairing (fig. 6). Pylon heights of 0.1667 ft, 0.3333 ft, 0.5 ft, and 0.5833 ft were tested with the H50,S40
configuration. All other configurations were tested with a 0.5833-ft pylon height.

5. Wake shield. A wake shield is a streamlined surface placed on the top of the pylon, and it is
designed mainly to minimize the interference drag incurred from hub fairing/pylon clearance. It is also
referred to in this report as a pylon end plate. A more detailed discussion on the wake shield is presented
in the next section. Two different wake shields, designated W1 and W2, were tested.

3.2 Test Sweeps

The test was organized into six test sweeps. This section outlines the purpose of each test sweep
and which parameters were varied.



1. Hub fairing camber with constant hub fairing diameter and thickness. This set of hub fairings
(H20, H30, H40, H50, and H60) was used to investigate the effect of hub fairing camber on the
hub/pylon mutual interference drag (fig. 8). Since the main objective of this test sweep was to study the
hub/pylon mutual interference drag, the set of hub fairings was designed to have comparable levels of
skin-friction drag and profile drag. This was accomplished by using hub fairings with the same amount
of wetted surface area, thickness ratio, and thickness distribution.

2. Hub fairing thickness ratio with constant hub fairing diameter. This set of hub fairings (H50,
H220, and H230) was used to investigate the profile drag of hub fairings with a circular-arc upper sur-
face and flat lower surface cross section (fig. 9). The purpose of this sweep was to determine the effects
of hub fairing thickness ratio on drag by varying the frontal area of the fairing while keeping the diame-
ter constant. A hub fairing with a higher thickness ratio entails less weight penalty because of a more
efficient use of fairing volume. Because the weight of each hub fairing is an important factor in evalu-
ating the attractiveness of a particular design, it is essential to measure the overall effects of hub fairing
thickness on drag.

3. Hub fairing thickness ratio with constant hub fairing thickness. This test sweep was devised to
study the trade-off between profile drag and skin-friction drag with respect to the change in the hub
fairing thickness ratio. This change in thickness ratio (hub fairing H50, H240, H250, H260, H270 and
H280; see fig. 10) was done by increasing the fairing diameter while keeping the thickness constant.
The cross sections of these fairings have the same geometric attributes: circular-arc upper surface and
flat lower surface. The reason for keeping the hub fairing thickness constant is that all the fairings will
house the same rotor hub. The circular-arc upper surface and flat lower surface fairing cross section was
chosen because it had been shown to be a low-drag configuration in previous wind tunnel tests
(refs. 8,9).

4. Pylon height. The scope of this sweep was to measure the pylon+hub fairing drag as a function
of pylon height. The potential flow interaction between the hub and fuselage depends directly on the
height of the shaft fairing. It is thus desirable to determine the drag trend with respect to the pylon
height. In this sweep, the pylon height was varied from 0.1667 ft to 0.5833 ft. The H50,5S40 configura-
tion was used.

5. Hub/pylon gap width. In this sweep, attention was focused on the small gap between the hub and
pylon. Previous wind tunnel tests indicated that the hub/pylon gap induces a high shaft-on-pylon inter-
ference drag. The objective of this test sweep was to measure how this extra drag penalty impacts the
drag reduction when using a hub fairing. Both high-drag and low-drag hub fairing designs, H10 and
HS50, respectively, were selected for this study (fig. 7).

6. Wake shield (or pylon end plate) concept. The purpose of this sweep was to study the potential
drag reduction from using wake shields. See figure 12 for drawings of the wake shields tested. The
wake shield is attached to the top of the pylon such that the sharp edge of the shield aligns to the free

stream.

The clearance between the hub fairing and pylon had been observed to cause high interference drag.
The wake shield is a design concept which attempts to minimize the impact of the gap on drag. If the
hub/pylon gap cannot be eliminated, the exposed part of the rotor shaft between the hub fairing and the
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pylon produces a turbulent wake. At a negative fuselage pitch angle, we may postulate that this turbu-
lent wake, with wake entrainment, may convect downstream and intermix with the boundary layer of the
flow over the aft portion of the pylon. Such interaction may disturb the pressure distribution of the flow
over the pylon and cause flow separation. In order to avoid the flow separation induced by the wake,
and hence the resultant drag penalty, the wake shicld, a wide edge plate, is installed atop of the pylon to
delay or prevent the turbulent wake from interacting with the flow over the pylon.

4. RESULTS AND DISCUSSION

The data are organized by run number. A cross reference between run number and configuration
definitions is provided in tables Il and ITII. The force and moment data are tabulated in the appendix.

Much of the hub-drag data presented here was obtained in order to confirm the methodology
used in previous hub drag tests, and therefore most of the configurations had been tested before
(refs. 8-12). However, this study went further than previous studies in the following areas:

1. The hub/pylon gap effect on the interference drag was examined more closely in the area in
which a large change in drag had been observed previously.

2. The effect of pylon height on drag was studied in detail.
3. More elaborate wake shield designs were tested.

For completeness, discussions of all of the test results are included in the following sections.
Some of the observations reiterate important findings published previously; the reader should refer to
references 8-12 for the original work on hub fairing development.

4.1 Data Correlation with the Ames 7- by 10-Foot Wind Tunnel Test Data

This section presents correlations between the Langley 14- by 22-Foot Wind Tunnel test data and
the Ames 7- by 10-Foot Wind Tunnel test data (ref. 11). Care was taken to ensure proper matching of
the model hardware, installation, and experimental configurations between these tests.

Apart from being conducted at different wind tunnel facilities, the two tests differed in one major
respect: the 14- by 22-Foot Wind Tunnel test used an internal strain-gage balance, whereas the 7- by
10-Foot Wind Tunnel test used the wind tunnel external scales. By correlating the test data, one can
determine whether the following factors introduced unacceptable distortion into the 7- by 10-Foot Wind
Tunnel test data:

1. Sting tare correction. In the 7- by 10-Foot Wind Tunnel test, the sting tare amounted to
approximately 68% of the total drag measured for most of the test configurations. In addition, the
model-on-sting interference effects were not accounted for in the sting tare correction.




2. Wind tunnel blockage effects. Model blockage correction was assumed to be negligible in the 7-
by 10-Foot Wind Tunnel test. The model blockage was 3.5% in the 7- by 10-Foot Wind Tunnel test. It
was reduced to 0.8% in the 14- by 22-Foot Wind Tunnel test.

Data correlation of four important test sweeps in the 14- by 22-Foot Wind Tunnel test and the
7- by 10-Foot Wind Tunnel test are presented in figures 13-16. From these comparisons, it can be con-
cluded that the model-on-sting interference and the model blockage had only minor impacts on the drag
data obtained in the previous 7- by 10-Foot Wind Tunnel tests.

4.2 Interference Effects Between Hub Fairing and Pylon

Data from different wind tunnel tests (ref. 3) clearly indicate that interference drag has encum-
bered the development of low-drag hub fairings. Mutual interference drag is engendered from the aero-
dynamic interactions between solid bodies when they are placed in proximity in the free stream. These
aerodynamic interactions are potential flow interaction, vortex interaction, and three-dimensional
boundary-layer interaction. Because of the interdependent nature of these interactions, a detailed and
accurate account of interference drag is impractical to obtain experimentally. It is important, however,
that the interference drag be conceptually understood. To aid in our analytical study of the drag data, the
following notations will be used in the discussion.

In general,

CDy = X-bodycomponent or isolated drag

CD,(/y = X-body-on-Y-body interference drag

CDy/x = Y-body-on-X-body interference drag

Cny = mutual interference drag between X body+Y body

and specifically,
CD; = CDfp+CDpp+ CDsyy
= CDgpp + CDpjr + CDpm+ CDpyp + CDg + CDpyst
= CD;-CDs - CDp - CDp
where
CD; = total mutual interference drag between fuselage, pylon, and hub fairing.



Three types of drag data were measured: CDy, CD¢+ CD, + CDg, and CD,.1  Without the drag
data of each isolated component, it is not possible to quantify the individual interference-drag compo-
nents. However, with careful reasoning, valuable insight can be obtained from these data.

Interference drag can be examined for a case in which the interference effects were readily ap-
parent. In figure 17, the drag as a function of the pitch angle is displayed for the following configura-
tons: fuselage alone, fuselage + S40 pylon, and fuselage + S40 pylon + H50 hub fairing. From this plot
we can observe the drag buildup from adding the pylon and then the hub fairing to the fuselage; that is,
we are looking at the magnitudes of CDy, CD; + CD,, + CDg, and CD¢ + CD,, + CDy+ CDg, + CDyp +
CDyg,. It may be noticed immediately that CDyy, + CDy, + CDyg, assumed a negative value at negative
pitch angles. In other words, the drag reduction caused by the acrodynamic interactions between the
H50 fairing and S80 pylon exceeded the additional component drag of the hub fairing. We should also
note that the negative magnitude of CDy, + CDy, + CDg, diminished as the angle of attack increased, and
CDg;, + CD,, became positive at o = 0°.

An explanation of the negative CDy, is given as follows. In the case of the fuselage + S40 pylon
configuration, when the pylon is set at a negative pitch angle, the flow over the top surface of the pylon,
under a favorable (negative) pressure gradient, tends go around the corner to the side surfaces of the
pylon in an effort to align with the free sream. At the right-angle comer of the $40 pylon, a local flow
separation, a separation bubble, is formed because of the failure of the flow to negotiate the abrupt
change in pressure gradient at the corner. Figure 18 is a depiction of this scenario. However, with the
H50 hub fairing placed atop the pylon, covering most of its upper surface, the flow is redirected over the
upper surface of the fairing, and the area of separation created at the corner of the pylon is thus preven-
ted. Based on the above reasoning, it can further be asserted that the drag reduction caused by the
elimination of local flow separation at the side surfaces of the pylon is higher than the skin friction and
profile drag of the H50 hub fairing.

At a positive angle of attack and in the absence of the hub fairing, a local flow separation is
likely to occur on the top surface of the pylon. However, the area of the top surface tangential to the free
stream is much less than that of the side surfaces at small incidence angles. Consequently the drag
penalty caused by the corner flow separation is small, at & = 0-2°. On the other side, the induced drag of
the cambered hub fairing, a lifting surface, becomes a contributing entity at a positive incident angle.
Therefore, the negative CD, decreases and CD;, increases as the pitch angle becomes more positive. It
follows that the drag reduction caused by the favorable interaction between the hub fairing and pylon
diminishes at positive angles of attack.

The data thus demonstrate that the acrodynamic interactions between the hub fairing and pylon
have a major impact on the effectiveness of different hub fairing designs.

1 Because of the simultaneous interactions between all of the acrodynamic bodies placed in proximity, the interference drag
between any two of the components is influenced by the presence of the other components. Likewise, the mutual interference
drag between the pylon and fuselage, CDg,, is influenced by the presence of the hub fairing. In this report, it is assumed that
the change in CDfp due to the presence of the hub fairing is negligible. CDfp is treated as a constant in the discussion.




4.3 Hub Fairing Camber and Surface Curvature

Previous tests indicated that a hub fairing with positive camber can yield substantial hub drag
reduction in forward flight (refs. 8,12). The present effort was a parametric study of the effect of hub
fairing camber on drag. The hub fairings were designed to have the same diameter, thickness ratio, and
thickness distribution (fig. 8). The wetted surface areas of these hub fairing are also very similar.
Therefore, the skin-friction drag and the profile drag of this series of fairings are comparable.

Figure 19 displays the drag as a function of the hub fairing camber. The data suggest that a hub
fairing with a 9% camber yields minimum drag. There was a precipitous drop in drag when the camber
was at 9% with both the S40 and the S80 pylons. Subtracting the fuselage drag, the 9%-cambered H50
fairing shows a drag reduction, when compared with the 0%-cambered H20 fairing, of 85% with the S80
pylon and 74% with the S40 pylon. If one ascribes the substantial drag reduction to the camber of the
hub fairing, then one is obliged to find out how the camber causes such drag reduction, and why the drag
reaches a minimum at the particular camber of 9%. After a careful review of the data, an alternative
cause-effect relation can be seen.

First, let us focus our attention on the lower aft surface of the hub fairing. Because the rotor shaft
is cylindrical in cross section, it is likely that flow separation occurs on the lower aft surface of the hub
fairing just behind the shaft. Because the local flow separation has a stronger adverse pressure gradient
(caused by positive surface gradient), it is more extensive on the H20, H30, and H40 fairings than on the
H50 fairing. Moreover, for those hub fairings with positive lower surface curvature, the flow over the
lower surface will be restricted even more when the hub fairing is placed tightly on the top surface of the
pylon. Such a flow condition escalates flow separation and produces higher pressure drag. Therefore,
hub fairings with a positive lower surface curvature, with more area tangential to the free stream, have
higher pylon-on-hub-fairing interference drag, CD,p,, than fairings with flat lower surfaces have.

Secondly, hub fairings with a flat lower surface have favorable interactions with the pylon (see
section 4.1). In contrast, for the H20, H30, and H40 fairings, the corner flow separation is aggravated by
the accelerating flow at the leading edge of the fairing because of the positive lower surface curvature.
Concomitantly, the reductions in both CD;,z, and CD,,p, reduce the drag of the H50 fairing to a much
lower level than that of the H20-40 series fairings.

The above reasoning offers a plausible explanation for the substantial drag reduction achieved by
using the H50 hub fairing. The drag reduction can be ascribed to the effect of the lower surface curva-
ture. It is reasonable to dismiss the 9% camber as the primary cause of the drag reduction.

We now turn our attention to why the drag-reduction benefit was more pronounced when the
S80 pylon was used. If we consider the flow over the S80 profile, we can see that there is a strong
adverse pressure gradient (a consequence of high surface gradient) on the pressure-recovery region
between 0.2 chord length and 0.7 chord length. That is, the boundary layer formed over the S80 pylon is
less stable than that over the S40 pylon, which has a more moderate surface gradient distribution. The
boundary layer on the S80 pylon is more prone to flow separation and thus is more sensitive to interfer-
ence effects. It follows that even small interference effects between the hub fairing and pylon may trig-
ger flow separation of the unstable boundary layer over the S80 pylon. However, when interactions with



the pylon are favorable, as when fairings with a flat lower surface are used, the boundary layer of the
S80 pylon remains attached, and substantial drag reduction is observed.

4.4 Hub Fairing Thickness Ratio

Hub fairings with circular-arc upper surfaces and flat lower surfaces were used to study the trade-
off between profile drag and skin-friction drag with respect to the change in the hub fairing thickness
ratio. Figure 20 shows the drag trend with respect to the hub fairing thickness ratio at two different pitch
angles. In this case the change in hub fairing thickness ratio was accomplished by increasing the fairing
diameter while keeping the fairing thickness constant. Note that the H280 fairing, with more wetted
surface, represents high skin-friction drag; while the H240 fairing, with a larger thickness ratio, repre-
sents high profile drag.

At moderate angles of attack, from 3° to -3°, the data indicate that profile drag and skin friction
drag were nearly even. The overall drag reached a minimum at a thickness ratio of 20%. At a more
negative angle of attack, about -6°, the profile drag caused a higher penalty than did the skin-friction
drag. That is, the drag increase was substantial with a thickness ratio of 25% or more. It may also be
concluded that a hub fairing with a 20% thickness ratio is less sensitive to change in pitch angle, and
yields minimum drag.

An additional study examined the profile drags of the same type of hub fairings with the same
diameter but different thicknesses (see fig. 9). The data, plotted in figure 21, clearly indicate that the
drag increased with the thickness ratio within the range studied.

4.5 Pylon Height

The presence of the pylon and the fuselage can alter both the magnitude and direction of the local
velocity in the hub region. Consequently, part of the interference drag can be attributed to the potential
flow interaction between the fuselage and the hub fairing. One of the important parameters influencing
the potential flow interaction is pylon height. This test sweep was done to determine the pylon+hub
fairing drag as a function of pylon height.

Before the data are examined, two important principles of potential flow theory should be noted.
First, there is a local increase in dynamic pressure on the top surface of the fuselage. Second, the direc-
tion of the flow near a surface tends to align with that surface. It is also clear that if the potential flow
interactions between the fuselage and the pylon/hub fairing were negligible, then the drag increase with
respect to pylon height would be linear. Figure 22 shows the drag versus pylon height for the H50,540
configuration at two different angles of attack. The data show a nonlinear trend in drag with respect to
the pylon height. This nonlinearity in drag gives credence to the assertion that hub fairing/pylon/
fuselage potential flow interactions had an appreciable influence on the interference drag.

Moreover, the data indicate that there was a favorable effect when the hub fairing was placed
close to the fuselage. There are two counteractive factors involved, namely the increase in local velocity
and the decrease in angle of attack. The dynamic pressure near the surface of the fuselage is higher than
that of the free stream. This causes a higher hub fairing component drag. However, because the flow
close to the fuselage tends to align with the surface, the hub fairing component drag is lower because of
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the reduction in angle of attack. In this case, the data suggest that the effect of reduction in angle of
attack had a greater impact on the drag than did the increase in local dynamic pressure.

A more direct approach to the study of the hub fairing/pylon/fuselage potential flow interactions
is to use potential flow codes to calculate the flow field around the fuselage. With potential flow calcu-
lation, the changes in magnitude and direction of the local velocity near the fuselage can be accounted
for quantitatively. It should also be noted that the interference drag caused by potential flow interactions
depends strongly on the actual hub fairing/pylon/fuselage configuration.

4.6 Hub Fairing/Pylon Gap

The detrimental effects of the hub fairing/pylon gap on the drag reduction achieved by using the
low-drag hub fairing (H50) were observed in previous wind tunnel tests. In this study, the gap effects
were examined more closely, with special attention to a small fairing/pylon gap in which a steep ascent
in drag was observed (ref. 11).

Figure 23 shows the drag as a function of the hub fairing/pylon gap for the H50-S40 and H10-
S40 configurations. Note that the pylon height was kept constant. In the case of the low-drag hub
fairing (H50), the data show that the drag rise was precipitous when the first 0.5-in. of hub fairing/pylon
gap was introduced. For the symmetrical hub fairing (H10), the drag was virtually unchanged with a
gap of less than 0.08 ft.

For a given shaft length, the shaft produces substantially higher drag than the pylon. Therefore,
the drag increase caused by the increase in the exposed shaft in the gap was anticipated. If the interfer-
ence effects are only a minor factor, the data should have reflected a more linear drag trend.

The following reasoning is offered to account for the nonlinearity of the drag trend. The exposed
shaft in the gap creates a turbulent wake, which in turn induces extensive boundary-layer separationin
the flow over both the lower aft portion of the hub fairing and the upper aft portion of the pylon. The
resulting drag penalty contributes much to the sharp rise in CD,. Moreover, in the presence of a gap,
the flat-lower-surface hub fairing was no longer able to eliminate the corner flow separation (refer to
section 4.1), and this further diminished the favorable interactions between the HS0 fairing and pylon.

The drag penalty of the hub/pylon gap on the H10 configuration was less significant because the
hub/pylon interference drag was already high. The drag actually dropped slightly when the first 0.25-in.
of gap was introduced. The reason for this is that the flow on the lower surface of the H10 fairing was
less restricted when a small gap was present. That is, the gap allowed the flow more room to turn
around the shaft and thus alleviated some of the flow separation at the low aft surface of the H10 fairing.
As the gap increased, the high-pressure drag produced by the rotor shaft became dominant.

4.7 Pylon Wake Shields

The reasoning behind the wake shield design concept is summarized in section 3.2. Two wake
shield designs (fig. 12) were studied with different pylon/hub fairing configurations. The impacts on
drag of the application of these wake shields can be seen in figures 24 and 25. The data indicate that this
design concept failed to meet its objectives. Instead of drag reduction, appreciable drag penalty was
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observed. This means either that the wake produced by the shaft had only minor impact on the flow
over the pylon, or that the extra profile drag of the wake shield exceeded any drag savings.

5. CONCLUDING REMARKS
The principal test results are summarized below:

1. The Langley 14- by 22-Foot Wind Tunnel test results agree with those of the previous Ames 7-
by 10-Foot Wind Tunnel hub drag tests. Good correlation between the different test data was observed,
substantiating the test methodology in both test programs.

2. Aecrodynamic interactions between the fairing and pylon are the fundamental factors that deter-
mine the drag level of seemingly similar hub fairing designs. The hub/pylon mutual interference drag
contributes significantly to the overall drag reduction. Therefore, hub fairing design should be coupled
with the pylon design in order to achieve optimal results.

3. Hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag
reduction.

4. The symmetrical hub fairing with circular-arc surfaces (H20) generates 74% more interference
drag than the cambered hub fairing with flat lower surface (H50) at moderate angles of attack, 2° to -4°.

5. A gap between the hub fairing and pylon induces high mutual interference drag and diminishes
the drag-reduction benefit obtained by using a hub fairing with a flat lower surface.

12




APPENDIX: TABULATED DATA®?

Hub Drag Reduction Test Data Summary
Langley 14- by 22-Foot Wind Tunnel

June 8, 1988

a Note: Some runs were used for weight taring; the data from these runs are not included in this data set.
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Table I. - TEST MATRIX SHOWING PYLON AND HUB FAIRING COMBINATIONS
C INDICATES CONFIGURATION NUMBER

PYLON p HU‘B FAIRING
. H10 H20 H30 H40 H50 | H60 H220 ‘ H230 H240 [ H250 ' H260 H270 W H280
S40 C21;+.c| C12;.b| C13;-b | C14;-b | CO6; -a,b,c,d | C15; -b ' C34; .d | C35; -d C07;.a | C0B;-a | C09;-a|C10;.a | C11;-a
540 (0.25-in. gap) | C22;-c C28; -¢ i
S40 (0.50-in. gap) C23; ¢ C29; ¢ . i
$40 (0.75-in. gap) | C24; ¢ €30; -¢ | i
S40 (1-in. gap) C25; ¢ C31; ¢
S$40 (3-in. gap) C26; -c C32; ¢ i
S80 C16; b C17;b| C18;-b | C19; -b C20; b
S$40 (6 in. high) C36; -e ‘
S$40 (4 in. high) C37; .0
$40 (2 in. high) C38; -0
$40 + W1 (1-in. gap) | C40; +f Ca2; o
S40 + W2 (1-in. gap) | Ca1; +f ca3; +f
$40 + W1 C44; of C46; ot
S40 + W2 C4s; +f ' CAT; ot

Notes:

*W- wake shleld

-a- hub fairing dlameter sweep (constant thickness)

«b- hub falring camber sweep (constant diameter and thickness)

«c- hub/pylon gap width (constant height between hub fairing and fuselage)
.d- hub fairing thickness sweep {(constant diameter)

«e- pylon helght sweep

«f- wake shield sweep

Figure 1. - Model installation in the NASA Langley 14- by 22-Foot Wind Tunnel.
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Figure 2. — Model dimensions and mounting scheme.

Z
YAW
MOMENT

PITCH MOMENT
D SIDE

T~ FORCE

FORCE AND
MOMENT
REF.CENTER

Y

Figure 3. — Reference coordinate system.
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Figure 4. — Data repeatability, H50-S40 configuration.
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Figure 5. - Reynolds number effects.
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HUB FAIRING

PYLON
HUB/PYLON /
GAP WIDTH i 1
T | PY LO?: HEIGHT
|
FUSELAGE
|
I
I
i
Figure 6. — Test configuration.
HS50
H10 H50
DIAMETER, ft 092 . 125
THICKNESS RATIO (FRACTION OF DIAMETER) 024 0.8
CAMBER (FRACTION OF DIAMETER) 000 | 0.9
LOWER SURFACE SECOND DERIVATIVE AT CENTER | -0.45 |  0.00
UPPER SURFACE SECOND DERIVATIVE ATCENTER | 045 @ -0.62

Figure 7. — Hub fairing cross sections: H10 and H50 hub fairing.
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H20 H30 H40 H50 H60
DIAMETER, ft 1.25 1.25 1.25 1.25 1.25
THICKNESS RATIO (FRACTION OF DIAMETER) 0.18 0.18 0.18 0.18 0.18
CAMBER (FRACTION OF DIAMETER) 0.00 0.03 0.06 0.09 0.11
UPPER SURFACE SECOND DERIVATIVE AT CENTER | -0.34 -0.44 -0.54 -0.62 -0.60
LOWER SURFACE SECOND DERIVATIVE AT CENTER 0.34 023 0.12 0.00 -1.00

Figure 8. — Hub fairing cross sections: variation of camber.

PN

H230
H220
|  HS50 H220 H230
DIAMETER, ft 1.25 1.25 125
THICKNESS RATIO (FRACTION OF DIAMETER) 0.18 0.24 0.29
CAMBER (FRACTION OF DIAMETER) 0.09 0.12 0.14
UPPER SURFACE SECOND DERIVATIVE AT CENTER | -0.62 -0.78 -0.87

Figure 9. — Hub fairing cross sections: variation of thickness ratio (constant diameter).
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H260
/2?0\
H250
H50
H240
H260 H270 H50 H260 H250 H240
DIAMETER, ft 1.67 1.46 125 0.92 0.74 0.66
THICKNESS RATIO 0.13 0.15 0.18 0.24 0.29 033
(FRACTION OF DIAMETER)
CAMBER 0.07 0.08 0.09 0.12 0.15 0.17
(FRACTION OF DIAMETER)
UPPER SURFACE SECOND -0.49 -0.55 -0.62 -0.78 -0.87 -0.92
DERIVATIVE AT CENTER

Figure 10. — Hub fairing cross sections: variations of thickness ratio (constant thickness).

| S40 | 'S80
CHORD LENGTH, ft 158 | 1.58
LOCATION OF MAXIMUM THICKNESS | 030 | 020
(FRACTION OF CHORD LENGTH) |
TRAILING EDGE SLOPE L o-147 a7
THICKNESS RATIO | 034 | o034

Figure 11. - Shaft fairing cross sections: S40 and S80 pylons.
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Figure 12. — Top views of the wake shields tested.
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Figure 13. — 14- by 22-Foot and 7- by 10-Foot Wind Tunnel test data comparison, effect of hub
fairing camber on drag with S80 pylon.
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Figure 14. - 14- by 22-Foot and 7- by 10-Foot Wind Tunnel test data comparison, effect of hub
fairing camber on drag with S40 pylon.
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Figure 15. — 14- by 22-Foot and 7- by 10-Foot Wind Tunnel test data comparison, hub/pylon fairing
gap effect on drag with H50 hub fairing, S40 pylon.
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Figure 16. — 14- by 22-Foot and 7- by 10-Foot Wind Tunnel test data comparison, hub/pylon fairing
gap effect on drag with H10 hub fairing, S40 pylon.
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Figure 17. — Interference effects between hub fairing and pylon.
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Figure 18. — Flow over S40 pylon without hub fairing at a negative angle of attack.
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Figure 19. — Effect of hub fairing camber on drag.
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Figure 20. — Drag as a function of hub fairing thickness ratio (constant thickness).
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Figixr*e 21. - Drag as a function of hub fairing thickness ratio (constant diameter).
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Figure 22. — Effect of pylon height on drag.



A H10 HUB FAIRING + S40 PYLON
O H50 HUB FAIRING + $40 PYLON

a= -2 deg

I\ | 1 1 1

0 2 4 6
GAP, in.

L

Figure 23. — Effect of hub/pylon gap width on drag (cambered H50 and symmetrical H10 hub

fairings with S40 pylon).
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Figure 24. — Effect of pylon wake shield (W1) on drag.
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Figure 25. — Effect of pylon wake shield (W2) on drag.
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